Name	•
Date:	

<u>Math 8</u> <u>Lesson S4: Cube Roots of Perfect Cubes</u>

A <u>perfect cube</u> is a number created by cubing a whole number (or multiplying a whole number by itself three times). They are also known as cube numbers. Perfect cubes are related to the **volume** of a cube (length x width x height).

Examples of perfect cubes:

We can use different ways to show that a number is a perfect cube.

- <u>Diagram</u>: 27 is a perfect cube because we can draw a cube with a volume of 27 cube units.
- Symbols: $27 = 3 \times 3 \times 3 = 3^3$
- Words: "three cubed is 27"

3

A <u>cube root</u> is the number that is multiplied by itself three times to create a perfect cube. It is written with a **radical**: $\sqrt[3]{}$.

Finding the **cube root** of a number is the **inverse** (opposite) of **cubing** a number; they undo each other.

It can also be said that the **cube root** is the **side length** of a cube and a **cube number** is the **volume** of a cube.

So,
$$4^3 = 3 \times 3 \times 3 = 27 \rightarrow 27$$
 is the cube of 3

and $\sqrt[3]{27} = 3$ because $27 \div 3 \div 3 = 3 \rightarrow 3$ is the cube root of 27.

Example: Find the **cube** of 8.

Example: Find the cube root of 8.

Name:

Score:

Teacher:

Date:

Perfect

Cubes Operations

Developing

Write the cube for each number.

2)
$$4^3 =$$
 3) $7^3 =$

3)
$$7^3 =$$

4)
$$6^3 =$$

5)
$$2^3 =$$

6)
$$10^3 =$$

Write the cube for each number.

$$3^3 =$$

8)
$$9^3 =$$

10)
$$6^3 =$$

11)
$$2^3 =$$

12)
$$5^3 =$$

Write the cube for each number.

14)
$$9^3 =$$

15)
$$2^3 =$$

16)
$$8^3 =$$

18)
$$5^3 =$$

Name:

Score:

Teacher:

Date:

Perfect

Cubes Operations

Developing

Write the cube root for each number.

1)
$$\sqrt[3]{1} =$$

1)
$$\sqrt[3]{1} =$$
 2) $\sqrt[3]{125} =$ 3) $\sqrt[3]{64} =$

3)
$$\sqrt[3]{64} =$$

4)
$$\sqrt[3]{729} =$$
 5) $\sqrt[3]{27} =$ 6) $\sqrt[3]{343} =$

5)
$$\sqrt[3]{27} =$$

6)
$$\sqrt[3]{343} =$$

Write the cube root for each number.

7)
$$\sqrt[3]{343} =$$
 8) $\sqrt[3]{1} =$ 9) $\sqrt[3]{512} =$

3)
$$\sqrt[3]{1} =$$

9)
$$\sqrt[3]{512} =$$

10)
$$\sqrt[3]{729} =$$
 11) $\sqrt[3]{216} =$ 12) $\sqrt[3]{125} =$

12)
$$\sqrt[3]{125} =$$

Write the cube root for each number.

13)
$$\sqrt[3]{1000} =$$
 14) $\sqrt[3]{512} =$ 15) $\sqrt[3]{125} =$

$$\sqrt[3]{512} =$$

15)
$$\sqrt[3]{125} =$$

16)
$$\sqrt[3]{64} =$$
 17) $\sqrt[3]{8} =$ 18) $\sqrt[3]{729} =$ _____

$$\sqrt[3]{8} =$$

Name : _____

A) Find the volume of each cube.

1)

3)

Volume = _____ Volume = _____ Volume = ____

B) Find the volume of each cube from the given side length.

4) side length = 8 cm

5) side length = 20 mm

Volume = _____

Volume = _____

6) side length = 11 mm

7) side length = 3 m

Volume = _____

Volume = _____

8) The length of each side of a cubical wooden block is 15 cm. What is the volume of the block?

Cubes and Cube Roots (A)

Instructions: Find the cube root or cube of each integer.

$$\sqrt[3]{1728} = \sqrt[3]{343} = \sqrt[3]{1} = \sqrt[3]{2197} =$$

$$\sqrt[3]{2197} =$$

$$\sqrt[3]{1000} =$$

$$\sqrt[3]{64} = \sqrt[3]{1000} = \sqrt[3]{729} = \sqrt[3]{125} =$$

$$\sqrt[3]{512} =$$

$$\sqrt[3]{2744} =$$

$$\sqrt[3]{512} = \sqrt[3]{2744} = \sqrt[3]{1331} = \sqrt[3]{4096} =$$

$$\sqrt[3]{8} = \sqrt[3]{3375} = \sqrt[3]{216} =$$

$$9^{3} =$$

$$15^3 =$$

$$12^{3} =$$

$$3^3 =$$

$$1^3 =$$

$$14^3 =$$

$$8^3 =$$

$$5^3 =$$

$$13^3 =$$

$$6^3 =$$

$$2^{3} =$$

$$4^3 =$$

$$11^3 =$$

$$10^3 =$$

$$7^3 =$$

$$16^3 =$$

Name : _____

Proficient

Volume - Cube

Sheet 2

A) Find the volume of each cube.

1)

2)

3)

Volume = _____ Volume = ____

Volume =

B) Find the volume of each cube from the given side length.

4) side length = $1\frac{1}{4}$ m

5) side length = $\frac{3}{5}$ mm

Volume = _____

Volume = _____

6) side length = $\frac{7}{6}$ cm

7) side length = $\frac{5}{8}$ m

Volume =

Volume = _____

8) How much space does a $\frac{1}{4}$ -m cubical gift box have?