Name:	
Date:	

Math 8

Lesson S2: Estimating Square Roots of Non-Perfect Squares

Recall:

- ✓ A perfect square is a number created by squaring a whole number (or multiplying a whole number by itself).
- ✓ Perfect squares are related to the **area** of a square (base x height).
- ✓ A square root is the number that is multiplied by itself to create a perfect square.

A <u>non-perfect square</u> is a number that cannot be created by squaring a whole number.

Examples of Perfect Squares	Example of Non-Perfect Squares	
. :		

<u>Investigate</u>: Work with a partner. Use the number line below to place each square root on the number line to show its approximate value:

$$\sqrt{2}$$
, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{11}$, $\sqrt{18}$, $\sqrt{24}$, $\sqrt{25}$

Benchmarking is method that can be used to estimate the square root of a non-perfect square. The idea is to find the 2 consecutive perfect squares that surround the non-perfect square, and then to use the square roots of the perfect square to estimate the square root of the non-perfect square.

Example 1: Use benchmarking to estimate the square root of 10.

Example 2: Use benchmarking to estimate the square root of 75.

<u>Checking your estimate</u>: To check the answer to a square root, do the opposite: square it!

Example 3: Is 5.1 or 5.2 a better estimate of $\sqrt{27}$?

Name: _____ Date: _____

Square Roots Worksheet

Developing

Estimate the answers to 1 decimals.

1 a. $\sqrt{4}$

1 b. $\sqrt{115}$

1 c. $\sqrt{20}$

2 a. $\sqrt{45}$

2 b. $\sqrt{46}$

2 c. √88

3 a. $\sqrt{82}$

3 b. $\sqrt{90}$

3 c. √71

4 a. $\sqrt{49}$

4 b. $\sqrt{140}$

4 c. √38

5 a. $\sqrt{73}$

5 b. $\sqrt{51}$

5 c. $\sqrt{2}$

6 a. $\sqrt{41}$

6 b. $\sqrt{94}$

6 c. √59

Date:

Square Roots Worksheet Proficient

Estimate the answers to 1 decimals.

1 a. $\sqrt{216}$

1 b. $\sqrt{136}$

1 c. √198

2 a. $\sqrt{131}$

2 b. $\sqrt{186}$

2 c. $\sqrt{113}$

3 a. $\sqrt{143}$

3 b. $\sqrt{109}$

3 c. √192

4 a. $\sqrt{148}$

4 b. $\sqrt{200}$

5 a. $\sqrt{185}$

5 b. $\sqrt{132}$

5 c. √207

6 a. $\sqrt{123}$

6 b. $\sqrt{127}$

6 c. √156

Name:	Date:

Square Roots Worksheet Extending

Estimate the answers to 2 decimals.

1 a.
$$\sqrt{23}$$

2 a.
$$\sqrt{327}$$

2 b.
$$\sqrt{293}$$

3 a.
$$\sqrt{299}$$

3 b.
$$\sqrt{253}$$

4 a.
$$\sqrt{368}$$

4 b.
$$\sqrt{70}$$