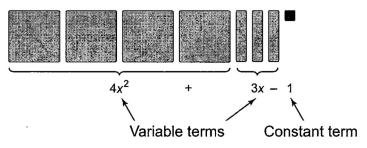
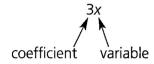

Name:	
Date:	


<u>Math 9</u> <u>Lesson P1: Modelling Polynomials & Combining Like Terms</u>


Some expressions contain x^2 terms.

For the expression $4x^2 + 3x - 1$:

In the term 3x, the **variable** is x and the **coefficient of the variable** is 3.

An algebraic expression like this one is also called a **polynomial**.

Example #1: Use algebra tiles to model each polynomial

a)
$$-4t^2$$

b)
$$2n - 5$$

These are all zero pairs:

and

and

We can use zero pairs to simplify algebraic expressions.

Example #2: Simplify this tile model. Write the polynomial that the remaining tiles represent.

Terms that can be represented by matching tiles are called **like terms**.

Like terms:

$$x^2$$
 and $-2x^2$

$$4s$$
 and $-s$

5w and w

Unlike terms:

$$3s$$
 and s^2

$$2x$$
 and -5

$$3d^2$$
 and 7

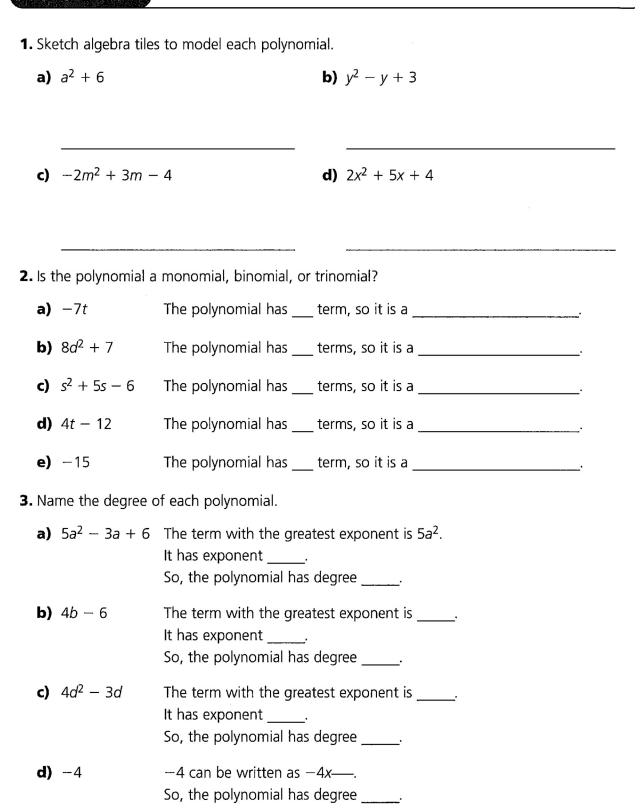
We can **simplify a polynomial** by adding the coefficients of like terms.

To simplify -5x + 2x, add the integers: -5 + 2 = -3

So,
$$-5x + 2x = -3x$$

Example #3: Simplify:

a)
$$3a + 6 + a - 4$$


b)
$$-x^2 + 4x - 5 + 3x^2 - 4x + 1$$

There are different **types** of polynomials, depending on the number of terms. The **degree of a polynomial** tells you the greatest exponent of any term.

Туре	Number of Terms	Example	Model	Degree	
Monomial	1	2s ²		2	
		-2 <i>n</i>		1	A monomial has 1 type of tile. A constant term
		4		2	has degree 0.
Binomial	2	$x^2 + 3$		2	
		2a — 1		1	A binomial has 2 different types of tiles.
		$-2b^2 + 3b$		2	
Trinomial	3	$-c^2 + 4c - 2$		2	A trinomial has 3 different types of tiles.

An algebraic expression that contains a term with a variable in the denominator, such as $\frac{5}{n}$, or the square root of a variable, such as \sqrt{n} , is not a polynomial.

Practice

4. Write the polynomial represented by each set of tiles.
a) Use the variable f.
b) Use the variable n .
c) Use the variable p.
5. Choose a set of tiles from question 4.
Write another polynomial that can be represented by the same set of tiles.
• Identify the polynomials that can be represented by the same set of algebra tiles
6. Identify the polynomials that can be represented by the same set of algebra tiles.
a) $x^2 + 3x - 1$ 1 1 1 1 , and B
b) $4r^2 - 5r + 9$
c) $9 + 4z^2 - 5z$
d) 3s + 1 + s ²
Parts and use the same algebra tiles.
So, both represent
the same polynomial.

Practice

. Wł	nat is the coefficient o	f each	n term?				
a)	2 <i>x</i> ²	b) 6				-3 <i>x</i>	
d)	7t	e) b			f)	-s	
. a)	Which of these terms $5z -z^2 -9$ $3z^2$ has variable Find all terms with the	_ _ and	-6 <i>z</i> expone	2 <i>z</i> 2 ent			
b)	Which of these term $-4x -3x^2 -5x$ has variable Find all terms with the	-2 and	7 <i>x</i> d expor	5 <i>x</i> ² nent	_,		
	mplify each tile model rite the polynomial th		e remain	ing tiles	repres	ent.	
b)	Remaining tiles:			<u></u>	Poly	nomial:	
	Remaining tiles:			· · · · · ·	Poly	nomial:	

Remaining tiles: _____ Polynomial: _____

4. Add	integers	to	combine	like	terms.
---------------	----------	----	---------	------	--------

a)
$$-3c + 5c$$
 $-3 + 5 =$ ______

b)
$$4s - s$$
 $4 + (-1) =$ _____

c)
$$-2x^2 + 7x^2 + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

5. Simplify each polynomial.

b)
$$7c^2 - 6c - 4c^2 + c$$
=
=

c)
$$11 - 9v + v^2 + 2 - v$$
=
=
=

d)
$$-7f^2 + 12f - 2 - 3f^2 - 3f + 5$$
=
=
=

A polynomial in simplified form is equal to the original polynomial.

6. Identify and explain any errors you find.

a)
$$3x + 2 = 5x$$

b)
$$5s + 3s = 8s^2$$

c)
$$x^2 - x^2 = 0$$