Pre-Calculus 11 Lesson 9.2 ~ Linear & Quadratic Inequalities in One Variable

In this chapter, we will look at linear and quadratic inequalities instead of linear and quadratic **equations**. Inequalities look the same as equations, but instead of an "=" sign, there is one of the following four signs: <, \le , >, or \ge .

< means less than

> means greater than

≤ means less than or equal to

≥ means greater than or equal to

< and > are represented by an open circle on a number line and exclude the x-intercept(s).

≤ and ≥ are represented by a **closed circle** on a number line and **include** the x-intercept(s).

Linear inequalities in one variable can be written in one of four forms:

•
$$mx + b < 0$$

•
$$mx + b > 0$$

•
$$mx + b \le 0$$

•
$$mx + b \ge 0$$

Quadratic inequalities in one variable can be written in one of four forms:

$$\bullet \quad ax^2 + bx + c < 0$$

$$\bullet \quad ax^2 + bx + c > 0$$

•
$$ax^2 + bx + c \le 0$$

•
$$ax^2 + bx + c \ge 0$$

Example #1: Graph the solution set for each linear inequality.

a)
$$x \leq -3$$

Example #2: Solve each linear inequality.

a)
$$3x + 4 > 5x + 2$$

b)
$$7n - 2(n+5) \le 3n - 16$$

$$\frac{2}{z} > \frac{2}{2}$$

6r

$$(n+5) \le 3n-16$$

$$\frac{2n}{2} = -\frac{6}{2}$$

Example #3: Solve $x^2 + 3x - 10 \ge 0$.

Example #5: Suppose a baseball is thrown from a height of 1.5 m. The inequality $-4.9t^2 + 17t + 1.5 > 0$ models the time, t, in seconds, that the baseball is in flight. During what time interval is the baseball in flight?

$$t = -17 \pm \sqrt{17^2 - 4(-4.9)(1.5)^2}$$

$$2(-4.9)$$

$$t = -17 \pm \sqrt{318.4^2}$$

$$-9.8$$

$$t = -0.086, 3.555$$

$$0 - 4 - 3.555$$

Baseball was in flight between 0s and 3.555s