Lesson 7.5 ~ Using Elimination to Solve a System of Linear Equations

The third of three methods is elimination (also known as the addition method).

Elimination Steps:

- 1. One of the variables must have the same coefficient (number in front) in both equations; if not, multiply one or both of the equations to create equal coefficients.
- 2. Add or subtract the equations to eliminate one of the variables.
- 3. Solve for the remaining variable.
- 4. Substitute known value into either original equation.
- 5. Solve for remaining variable.
- 6. Check your answer.

Example #1: Solve the linear system and verify the solution.

Example #1: Solve the linear system and verif
$$3x-5y=-9$$
+ $(4x+5y=23)$

$$7x+0y=14$$

$$7x=14$$

$$7x=14$$

$$7x=2$$

$$6-5y=-9$$

$$\frac{15}{5} = \frac{5}{5}$$

verify: ①
$$3(2)-5(3)=-9$$

6 - 15 = -9
-9 = -9 ~

Example #2: Solve the linear system and verify the solution.

①
$$(3x+4y=29) \times 2 \Rightarrow 6x + 8y = 58$$

 $\frac{2x-5y-19}{2}$
② $(2x-5y=-19) \times 3 \Rightarrow (6x-15y=-57)$
○ $x+23y=115$
 $x=23y=115$
 $x=3y=115$
 $x=3y=115$

Example #3: Solve the linear system and verify the solution.

6=6 V

①
$$\left(\frac{3}{4}x - y = 2\right) \times 4 \implies 3x - 4y = 8$$
② $\left(\frac{1}{8}x + \frac{1}{4}y = 2\right) \times 8 \implies (x + 2y = 16) \times 2 \implies + \frac{(2x + 4y = 32)}{5x + 0y = 40}$

$$\frac{5x}{5} = \frac{40}{5}$$

$$\frac{3}{4}(8) - y = 2$$

$$\frac{24}{4} - y = 2$$

$$\frac{24$$