Common Math 10
Lesson 6.6 ~ General Form of the Equation for a Linear Function

General form is the third of three forms of an equation for a linear function that we will look at.

\[Ax + By + C = 0 \]

To write any equation of a line in standard form:
1. Move everything to one side.
2. Multiply by the common denominator to eliminate any fractions (or decimals).
3. Multiply or divide to make \(A \) positive.

Standard form is also sometimes used; it is very similar to general form except that the constant is on the other side of the equation.

\[Ax + By = -C \]

Example #1: Write each of the following in general form.

a) \(y = -\frac{1}{4}x + 3 \)

\[
\begin{align*}
(y &= -\frac{1}{4}x + 3) \times 4 \\
4y &= -x + 12 \\
-x - 12 + x &= 12 \\
x + 4y - 12 &= 0
\end{align*}
\]

b) \(y + 2 = \frac{3}{2}(x - 4) \)

\[
\begin{align*}
(y + 2 &= \frac{3}{2}x - 6) \times 2 \\
2y + 4 &= 3x - 12 \\
-2y - 4 &= -2y - 4 \\
0 &= 3x - 2y - 16
\end{align*}
\]
To graph a line in general form:
- Isolate the y to write in slope-intercept form, and then graph, or
- Find the x and y intercepts and graph these.

Example #2: Graph the equation $x + 3y + 9 = 0$ using two methods.

Method 1: write in slope-intercept form to graph

\[
\begin{align*}
&x + 3y + 9 = 0 \\
&-x - 9 = -3y \\
&y = -\frac{1}{3}x - 3
\end{align*}
\]

Method 2: calculate intercepts to graph

x-int \Rightarrow make $y = 0$

\[
\begin{align*}
x + 3(0) + 9 &= 0 \\
x + 9 &= 0 \\
-x &= -9 \\
x &= -9 \Rightarrow (-9, 0)
\end{align*}
\]

y-int \Rightarrow make $x = 0$

\[
\begin{align*}
0 + 3y + 9 &= 0 \\
3y &= -9 \\
y &= -3 \Rightarrow (0, -3)
\end{align*}
\]