
Foundations of Math & Pre-Calculus 10 Lesson 6.1 ~ Slope of a Line

In the previous lessons, we calculated the rate of change of a linear function:

$$rate of change = \frac{change in dependent variable}{change in independent variable} = \frac{rise}{run} = slope = m$$

Example #1: Determine the slope of each graphed line segment.

Example #2: Draw three line segments with slope -4.

"Special" Slopes: horizontal and vertical lines

Slope
$$=\frac{\text{rise}}{\text{run}}$$

Slope =
$$\frac{1}{\text{rul}}$$

Slope =
$$\frac{\text{rise}}{\text{run}}$$

$$Slope = \frac{rise}{0}$$

Slope is undefined.

Example #3: Determine the slope of the line that passes through (4, -5) and (8, 6).

$$m = rise = \boxed{11}$$

A line passing through point $A(x_1, y_1)$ and $B(x_2, y_2)$ has slope $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Example #4: Determine the slope of the line that passes through (1,24) and (3,72).

$$(x_1, y_1)$$
 (x_2, y_2)
 $(1, 24)$ $(3, 72)$