Foundations of Math & Pre-Calculus 10 Lesson 5.2 ~ Functions & Function Notation

A function is a special type of relation where every input has one unique output.

The Mailbox Analogy:

Think of the input as a letter.

Think of the output as a mailbox.

The same letter <u>cannot</u> go to two different mailboxes: THIS IS NOT A FUNCTION!

Two different letters <u>can</u> go to the same mailbox: THIS IS A FUNCTION!

Example #1: Determine whether the relation is a function. Explain why or why not.

a) A relation that associates given shapes with the number of right angles in the shape. {(right triangle, 1), (square, 4), (rectangle, 4), (regular hexagon, 0)}

*This is a function because every input (shape) has only one output (number of right angles).

9

*This is not a function because some inputs have more than one output (input 1 has two outputs, -1 & 1).

Independent variables represent data that is not determined by the value of another variable (most common independent variable is time); graphed on the horizontal axis.

Dependent variables represent data that is determined by the value of another variable (common dependent variables are cost, height, distance, etc); graphed on the vertical axis.

of values
output
Y
vert.
range
range dep.

* sentence

"The <u>dependent</u> variable is a function of the <u>independent</u> variable."

Example #2: The table shows the masses, m grams, of different numbers of identical marbles, n.

Number of Marbles, n	Mass of Marbles, m
1	1.27
2	2.54
3	3.81
4	5.08
5	6.35
6	7.62

a) Why is the relation also a function?

b) Identify the independent variable and the dependent variable

<u>Vertical Line Test</u>: A graph represents a function when no two points on the graph lie on the same vertical line.

Example #3: Using the Vertical Line Test, determine whether each graph represents a function.

Outside Temperature over a 24-h Period

* Function

Masses of Students against Height

* Not a function

Function Notation can be used to write equations in two variables.

y = -2x + 5 can be written as f(x) = -2x + 5

• (say "f of x" \rightarrow means f as a function of x)

C = 40n + 5 can be written as C(n) = 40n + 5, where C is the cost in dollars and n is the number of copies made

 (say "C of n" → means cost as a function of the number of copies)

Example #4: Find g(5) for g(x) = 3x + 1

Example #5: Find x for f(x) = 10 and f(x) = 4x - 2

$$\begin{array}{cccc}
10 &= & 4 & x - 2 \\
+2 & & +2
\end{array}$$

$$\begin{array}{cccc}
12 &= & 4 & x \\
4 & & 4 & x
\end{array}$$

$$3 &= & x & \longrightarrow & f(3) = 10$$

Example #6: The equation V = -0.08d + 50 represents the volume, V litres, of gas remaining in a vehicle's tank after travelling d kilometres. The gas tank is not refilled until it is empty.

a) Describe the function and write it in function notation

The amount of gas in the vehicle's tank is a function of the number of kilometres driven.

$$V(d) = -0.08d + 50$$

b) Determine the value of V(600). What does this number represent?

V(600)=2 \rightarrow After driving 600 km, there are 2 L of gas remaining.

c) Determine the value of d when V(d) = 26. What does this number represent?

$$26 = -0.08d + 50$$
 $\rightarrow V(300) = 26$
 -50 $\rightarrow 50$ $\rightarrow 50$ $\rightarrow 60$ $\rightarrow 60$