A function is a special type of relation where every input has one unique output.

The Mailbox Analogy:
Think of the input as a letter. Think of the output as a mailbox.

The same letter cannot go to two different mailboxes: THIS IS NOT A FUNCTION!

Two different letters can go to the same mailbox: THIS IS A FUNCTION!
Example #1: Determine whether the relation is a function. Explain why or why not.

a) A relation that associates given shapes with the number of right angles in the shape. \{(\text{right triangle}, 1), (\text{square}, 4), (\text{rectangle}, 4), (\text{regular hexagon}, 0)\}

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>right Δ</td>
<td>1</td>
</tr>
<tr>
<td>square</td>
<td>4</td>
</tr>
<tr>
<td>rect.</td>
<td>4</td>
</tr>
<tr>
<td>reg. hex</td>
<td>0</td>
</tr>
</tbody>
</table>

* This is a function because every input (shape) has only one output (number of right angles).

b)

is the square of

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
</tr>
</tbody>
</table>

* This is not a function because some inputs have more than one output (input 1 has two outputs, -1 & 1).

Independent variables represent data that is not determined by the value of another variable (most common independent variable is time); graphed on the horizontal axis.

Dependent variables represent data that is determined by the value of another variable (common dependent variables are cost, height, distance, etc); graphed on the vertical axis.

table of values

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>horiz. vert. domain range indep. dep.</td>
<td></td>
</tr>
</tbody>
</table>

sentence

"The dependent variable is a function of the independent variable."
Example #2: The table shows the masses, m grams, of different numbers of identical marbles, n.

<table>
<thead>
<tr>
<th>Number of Marbles, n</th>
<th>Mass of Marbles, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.27</td>
</tr>
<tr>
<td>2</td>
<td>2.54</td>
</tr>
<tr>
<td>3</td>
<td>3.81</td>
</tr>
<tr>
<td>4</td>
<td>5.08</td>
</tr>
<tr>
<td>5</td>
<td>6.35</td>
</tr>
<tr>
<td>6</td>
<td>7.62</td>
</tr>
</tbody>
</table>

a) Why is the relation also a function?

Every input (n) has one unique output (m).

b) Identify the independent variable and the dependent variable

independent variable : n

dependent variable : m

Vertical Line Test: A graph represents a function when no two points on the graph lie on the same vertical line.

Example #3: Using the Vertical Line Test, determine whether each graph represents a function.

Outside Temperature over a 24-h Period

* Function

Masses of Students against Height

* Not a function
Function Notation can be used to write equations in two variables.

\[y = -2x + 5 \text{ can be written as } f(x) = -2x + 5 \]

- (say "f of x" → means f as a function of x)

\[C = 40n + 5 \text{ can be written as } C(n) = 40n + 5, \]

where \(C \) is the cost in dollars and \(n \) is the number of copies made

- (say "C of n" → means cost as a function of the number of copies)

Example #4: Find \(g(5) \) for \(g(x) = 3x + 1 \)

\[
\begin{align*}
g(5) &= 3(5) + 1 \\
g(5) &= 15 + 1 \\
g(5) &= 16
\end{align*}
\]

Example #5: Find \(x \) for \(f(x) = 10 \) and \(f(x) = 4x - 2 \)

\[
\begin{align*}
10 &= 4x - 2 \\
+2 &= 4x \\
\frac{12}{4} &= x \\
3 &= x
\end{align*}
\]

\[f(3) = 10 \]

Example #6: The equation \(V = -0.08d + 50 \) represents the volume, \(V \) litres, of gas remaining in a vehicle’s tank after travelling \(d \) kilometres. The gas tank is not refilled until it is empty.

a) Describe the function and write it in function notation

The amount of gas in the vehicle’s tank is a function of the number of kilometres driven.

\[V(d) = -0.08d + 50 \]

b) Determine the value of \(V(600) \). What does this number represent?

\[
\begin{align*}
V(600) &= -0.08(600) + 50 \\
&= -48 + 50 \\
&= 2
\end{align*}
\]

\[\rightarrow \text{After driving 600 km, there are 2 L of gas remaining.} \]

c) Determine the value of \(d \) when \(V(d) = 26 \). What does this number represent?

\[
\begin{align*}
26 &= -0.08d + 50 \\
-50 &= -0.08d \\
\frac{-24}{-0.08} &= d \\
300 &= d
\end{align*}
\]

\[\rightarrow V(300) = 26 \]

\[\rightarrow \text{After driving 300 km, there are 26 L of gas remaining.} \]