Foundations of Math & Pre-Calculus 10 Lesson 4.5 ~ Negative Exponents & Reciprocals

Powers with Negative Exponents

When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^n .

$$x^{-n} = \frac{1}{x^n}$$

$$x^{-n} = \frac{1}{x^n}$$
 For example: $10^{-2} = \frac{1}{10^2} = \frac{1}{100}$

and
$$\frac{1}{x^{-n}} = x^n$$

$$\operatorname{or}\left(\frac{1}{2^{-4}}\right) = 2^4 = 16$$

Example #1: Simplify and evaluate each of the following (where possible).

a) 7^{-2} (10) $^{-3}$ (20) $^{-3}$

or
$$\left(\frac{1}{2^{-4}}\right) = 2^4 = 16$$

mple #1: Simplify and evaluate each of the following (where a) $7^{-2} = \frac{1}{7^2}$ simplified b) $\left(\frac{10}{3}\right)^{-3} = \frac{1}{7^2}$

= valuated = $\frac{1}{49}$

b)
$$\left(\frac{10}{3}\right)^{-3} = \left(\frac{3}{10}\right)^{3}$$

$$= \left(\frac{27}{1000}\right)^{3}$$

$$c)\left(-\frac{10}{3}\right)^{-3} = \left(-\frac{3}{10}\right)^{3}$$

d)
$$x^{-5} = \boxed{\frac{1}{x^5}} = \left(\frac{1}{x}\right)^5$$

to either the I like to keep it on top.

e)
$$\frac{1}{a^{-6}} = \sqrt{a^{6}}$$

f)
$$\left(\frac{m}{n}\right)^{-3} = \left(\frac{n}{m}\right)^{3}$$