Name:	
Date: _	

<u>Math 9</u> <u>Lesson 2.4 ~ Exponent Laws (Part 1)</u>

Product of Powers

Product of Powers	Product as Repeated Multiplication	Product as a Power
2 ³ x 2 ⁵		
3 ⁷ x 3		
	$(4 \times 4) \times (4 \times 4 \times 4 \times 4 \times 4 \times 4)$	
	(5 x 5 x 5 x 5 x 5) x (5 x 5 x 5 x 5 x 5 x 5 x 5)	
		69

Exponent Law for a Product of Powers:

$a^m \times a^n = a^{m+n}$	a≠0

To multiply powers with the same base, add the exponents. The variable a is any integer, except 0. The variables m and n are any whole numbers.

Quotient of Powers

Quotient of Powers	Quotient as Repeated Multiplication	Quotient as a Power
75 ÷ 73		
89 ÷ 81	est to the second of the secon	
	<u>9 x 9 x 9 x 9 x 9 x 9</u> 9 x 9 x 9	
	10 x 10 x 10 x 10 10 x 10 x 10 x 10	
		113

Exponent Law for a Quotient of Powers:

$$a^m \div a^n = a^{m-n}$$
 $a \neq 0, m \geq n$

To divide powers with the same base, subtract the exponents. The variable a is any integer, except 0. The variables m and n are any whole numbers; but m must be greater than n.

Example # 1: Write each expression as a single power.

a)
$$8^5 \times 8^7$$

b)
$$(-4)^{12} \div (-4)$$

Example # 2: Simplify and evaluate.

a)
$$36 \times (-3)^2$$

b)
$$9^2 \times 9^5 \div 9^3$$

Example #3: Simplify and evaluate.

a)
$$6^2 + 6^3 \times 6^2$$

b)
$$(-10)^4$$
 [$(-10)^6 \div (-10)^4$] -10^2

Practice

1. Write each product as a single power.

a)
$$7^6 \times 7^2 =$$

b)
$$(-4)^5 \times (-4)^3 =$$

c)
$$(-2) \times (-2)^3 =$$

d)
$$10^5 \times 10^5 =$$

To multiply powers with the same base, add the exponents.

e)
$$7^0 \times 7^1 =$$

f)
$$(-3)^4 \times (-3)^5 =$$

2. Write each quotient as a power.

a)
$$(-3)^5 \div (-3)^2 =$$

b)
$$5^6 \div 5^4 =$$

c)
$$\frac{4^7}{4^4} =$$

d)
$$\frac{5^8}{5^6} =$$

To divide powers with the same base, subtract the exponents.

e)
$$6^4 \div 6^4 =$$

f)
$$\frac{(-6)^8}{(-6)^7} =$$

3. Write as a single power.

a)
$$2^3 \times 2^4 \times 2^5 =$$

b)
$$\frac{3^2 \times 3^2}{3^2 \times 3^2} =$$

Which exponent law should you use?

c)
$$10^3 \times 10^5 \div 10^2 =$$

d)
$$(-1)^9 \div (-1)^5 \times (-1)^0$$

4. Simplify, then evaluate.

a)
$$(-3)^1 \times (-3)^2 \times 2$$

b)
$$9^9 \div 9^7 \times 9^0 =$$

See if you can use the exponent laws to simplify.

c)
$$\frac{5^2}{5^0}$$
 =

d)
$$\frac{5^5}{5^4} \times 5 =$$

5. Identify any errors and correct them.

a)
$$4^3 \times 4^5 = 4^8$$

b)
$$2^5 \times 2^5 = 2^{25}$$

c)
$$(-3)^6 \div (-3)^2 = (-3)^3$$

.

d)
$$7^{0} \times 7^{2} = 7^{0}$$

.

e)
$$6^2 + 6^2 = 6^4$$

f)
$$10^6 \div 10 = 10^6$$

g)
$$2^3 \times 5^2 = 10^5$$
