Foundations of Math & Pre-Calculus 10 Grade 9 Exponent Laws Review

Exponent Law for a Product of Powers:

$$a^m \times a^n = a^{(m+n)}, a \neq 0$$

To multiply powers with the same base, add the exponents. The variable a is any integer, except 0. The variables m and n are any whole numbers.

Exponent Law for a Quotient of Powers:

$$a^m \div a^n = a^{(m-n)}, \ a \neq 0$$

To divide powers with the same base, subtract the exponents. The variable a is any integer, except 0. The variables m and n are any whole numbers.

Example #1: Simplify each expression (write as a single power).

any # has

a)
$$8^5 \times 8^7 = 8^{12}$$

b)
$$(-4)^{12} \div (-4)$$

write division
$$\frac{(-4)^{12}}{(-4)^{1}} = \boxed{(-4)^{11}}$$

another way to

c)
$$k^6 \times k^2 = \boxed{k^8}$$

an exponent of 1

a)
$$\frac{h^2 \times h^5}{h^9} = \frac{h^7}{h^9} = \frac{h^7}{h^9}$$

negative exponents are okay (for now)

Example #2: Simplify and evaluate each expression.

no rules for Simplifying addition (or subtraction)

b)
$$(-3)^4[(-3)^{\circ} \div (-3)^{\circ}] - 3^2$$

* Follow BEDMAS

of powers

$$= (-3)^{\frac{1}{2}} [(-3)^{\frac{1}{2}}] - 3^{2}$$

$$= (-3)^{\frac{1}{2}} - 3^{2}$$

$$(a^m)^n = a^{mn}, a \neq 0$$

To raise a power to a power, multiply the exponents. The variable a is any integer, except 0. The variables m and n are any whole numbers.

Example #3: Simplify each expression (write as a single power).

a)
$$(8^2)^5 = 8^{10}$$

b)
$$[(-7)^3]^4 = (-7)^{12}$$

brackets are essential (they must be there) since

$$(a\times b)^m=a^m\times a^m,\,a,b\neq 0$$

The variables a and b are any integers, except 0. The variable m is any whole number.

$$(a \div b)^m = a^m \div a^m, \ a, b \neq 0$$

The variables a and b are any integers, except 0. The variable m is any whole number.

Example #4: Write each expression as a product or quotient of powers.

a)
$$(cd)^2 = c^2 d^2$$

b)
$$(e^2f^4g)^3 = e^6f^{12}g^3$$

$$C)\left(\frac{j}{k}\right)^{4} = \begin{bmatrix} \cdot & 4 \\ j & k \end{bmatrix}$$

$$d\left(\frac{m^2}{n^5}\right)^5 = \frac{m}{n^{25}}$$

Example #5: Simplify the following expression.

$$\left(\frac{4p^{-2}r^{4}}{p^{0}r^{5}\times p^{3}r^{3}}\right)^{2} = \left(\frac{4p^{-2}r^{4}}{p^{3}r^{8}}\right)^{2} = \left(4p^{-5}r^{-4}\right)^{2}$$

* do inside brackets first

$$= 4^{2} p^{-10} r^{-8}$$
$$= 16 p^{-10} r^{-8}$$