\qquad
\qquad

Foundations of Math \& Pre-Calculus 10 Grade 9 Exponent Laws Review

- Exponent Law for a Product of Powers:

$$
a^{m} \times a^{n}=a^{(m+n)}, a \neq 0
$$

To multiply powers with the same base, add the exponents. The variable a is any integer, except 0 . The variables m and n are any whole numbers.

- Exponent Law for a Quotient of Powers:

$$
a^{m} \div a^{n}=a^{(m-n)}, a \neq 0
$$

To divide powers with the same base, subtract the exponents. The variable a is any integer, except 0 . The variables m and n are any whole numbers.

Example \# 1: Simplify each expression (write as a single power).
a) $8^{5} \times 8^{7}$
b) $(-4)^{12} \div(-4)$
C) $k^{6} \times k^{2}$
d) $\frac{h^{2} \times h^{5}}{h^{9}}$

Example \#2: Simplify and evaluate each expression.
a) $2^{2}+2^{3} \times 2^{2}$
b) $(-3)^{4}\left[(-3)^{6} \div(-3)^{4}\right]-3^{2}$

- Exponent Law for a Power of a Power: $\quad\left(a^{m}\right)^{n}=a^{m n}, a \neq 0$

To raise a power to a power, multiply the exponents. The variable a is any integer, except 0 . The variables m and n are any whole numbers.

Example \#3: Simplify each expression (write as a single power).
a) $\left(8^{2}\right)^{5}$
b) $\left[(-7)^{3}\right]^{4}$

- Exponent Law for a Power of a Product:

$$
(a \times b)^{m}=a^{m} \times a^{m}, a, b \neq 0
$$

The variables a and b are any integers, except 0 . The variable m is any whole number.

- Exponent Law for a Power of a Quotient: $(a \div b)^{m}=a^{m} \div a^{m}, a, b \neq 0$

The variables a and b are any integers, except 0 . The variable m is any whole number.

Example \#4: Write each expression as a product or quotient of powers.
a) $(c d)^{2}$
b) $\left(e^{2} f^{4} g\right)^{3}$
C) $\left(\frac{j}{k}\right)^{4}$
d) $\left(\frac{m^{2}}{n^{5}}\right)^{5}$

Example \#5: Simplify the following expression.

$$
\left(\frac{4 p^{-2} r^{4}}{p^{0} r^{5} \times p^{3} r^{3}}\right)^{2}
$$

