Name: **KEY** 

## Foundations of Math & Pre-Calculus 10 Chapter 2 ~ Trigonometry

In this chapter, we will be working with right triangles (triangles that have one right, or 90°, angle).

Pythagorean Theorem:  $a^2 + b^2 = c^2$ 

✓ use to find missing side length if you know the other two lengths

Sine/Cosine/Tangent Ratios: SOH CAH TOA (set calculator to Degrees)

- ✓ use to find missing angle measures or side lengths
- sin θ = <u>opposite</u> hypotenuse
- cos θ = <u>adjacent</u> hypotenuse
- $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$





\*\*use sin/cos/tan to find sides

\*\*use sin-1/cos-1/tan-1 to find angles

**Angles of Inclination, Elevation, and Depression**: the acute angles between lines and the horizon.

\*Do not assume the diagrams are drawn to scale.

Examples for Lesson 2.1 & 2.4

1. Determine  $\sin G$ ,  $\cos G$ , and  $\tan G$ , and then determine  $\sin J$ ,  $\cos J$ , and  $\tan J$ .



Sin 
$$G = Opp = \boxed{8}$$
  
hyp 17

$$tan G = Opp = B$$
 $adj = 15$ 

$$\cos J = \underline{adj} = \boxed{\frac{8}{17}}$$
Hyp 17

2. Determine the measures of < K and < N to the nearest tenth of a degree.



$$tan K = \frac{9}{13}$$
  $tan N = \frac{13}{9}$ 

$$K = \tan^{-1}\left(\frac{9}{13}\right)$$
  $N = \tan^{-1}\left(\frac{13}{9}\right)$ 

3. Determine the measures of < K and < M to the nearest tenth of a degree.



$$K = Sin^{-1} \begin{pmatrix} 3 \\ 8 \end{pmatrix}$$
  $M = Cos^{-1} \begin{pmatrix} \frac{3}{8} \end{pmatrix}$ 

$$M = \cos^{-1}\left(\frac{3}{8}\right)$$

Examples for Lesson 2.2 & 2.5

4. Determine the length of PQ to the nearest tenth of a centimeter.



5. Determine the length of VX to the nearest tenth of a centimeter.



$$x \times \tan 42^{i} = \frac{7.2}{x}$$

$$x = \frac{7.2}{\tan 42^{\circ}}$$

$$x = 8.0 \text{ cm}$$

## **Examples for Lesson 2.6**

1. **Solve** this triangle. Give the measures to the nearest tenth.



tan 
$$N = \frac{7}{11}$$

tan 
$$N = \frac{7}{11}$$
 K=180-90-32.5

$$N = \tan^{-1} \left( \frac{7}{n} \right)$$

$$7^{2} + 11^{2} = c^{2}$$
  
 $49 + 121 = c^{2}$   
 $\sqrt{170} = \sqrt{c^{2}}$   
 $c = |KN = 13.0 \text{ cm}$ 

2. **Solve** this triangle. Give the measures to the nearest tenth where necessary.



$$9 \times \tan 51^\circ = \frac{GH}{9} \times 91 \quad \sin 39^\circ = \frac{9}{9}$$

## **Examples for Lesson 2.7**

1. Calculate the length of XY to the nearest tenth of a centimeter.



$$x = 2.9 \, \text{cm}$$

$$y = \frac{2.9}{\cos 22} = 3.1 \text{ cm}$$

2. A surveyor stands at a window on the 9th floor of an office tower. He uses a clinometer to measure the angles of elevation and depression of the top and the base of a taller building. The surveyor sketches this plan of his measurements. Determine the height of the taller building to the nearest tenth of a metre.



$$tan 42° = \frac{39}{y}$$

$$y = \frac{39}{\tan 42^{\circ}}$$

$$y = 43.3m$$

$$\tan 31^\circ = \frac{x}{43.3}$$

$$x = 43.3 \tan 31^{\circ}$$
  
 $x = 26.0 \text{ m}$